跳到主要內容

基因編輯2.0 ,研究顯示在胚組進行織基因編輯,能更有效的改變植物性狀!

基因編輯2.0 ,研究顯示在胚組進行織基因編輯,能更有效的改變植物性狀!

編譯 張瑞玶編輯 柴幗馨


基因編輯技術的發明源自於細菌的防衛系統,當細菌受到嗜菌體侵犯感染時,會複製一段來自嗜菌體的核酸序列,並保存在細菌自己特定的基因組之中。這些特定基因組像是「通緝犯資料的檔案櫃」,內藏各種嗜菌體的核酸序列的「犯人資訊」。此後只要有相同的核酸序列出現在細胞內,細菌便會出動自己的「編輯系統」,將特定序列剪切或是修補回正常的序列。

1970年代,分子生物學家把這套細菌的防衛系統,以基因工程的方式,轉殖到模式植物-阿拉伯芥中,成功的創造出「具有基因編輯系統的基改植物」。接著他們開始跟育種家合作,將基改技術與傳統育種技術互相融合。利用基因編輯改變作物的性狀,再透過自交與回交等育種方法,成功獲得「沒有外源基因」,遺傳背景與傳統作物完全相同的「非基改」作物。

(為什麼基因編輯技術能產生與傳統育種一樣的「非基改」作物?)

然而這項技術在不同的作物的編輯效率各有落差,甚至出現了開花器官無法產生編輯效果的問題。來自日本的研究團隊,便設計了特殊的啟動子(一段促進基因表現的序列),讓基因編輯效果大量發生在花器中,成功提高基因編輯技術在開花植物的成功效率。


名古屋大學轉化生物分子研究所(ITbM)的植物生物學家們,在植物與細胞生理學雜誌上報導,他們開發了一種能夠轉移基因信息的新基因編輯法,能有效地移除阿拉伯芥中的目標基因。該團隊使用簡單、多功能性、與高效率等特性之CRISPR / Cas9系統作為研究的遺傳操作方法。


CRISPR / Cas9系統主要透過移除特定基因調查其基因之特性。


研究團隊中的Tsutsui和Higashiyama表示,阿拉伯芥基因組編輯的有效方法為:在早期發育階段中,使用RPS5A啟動子(又稱pKIR載體),讓Cas9能有效地表現且移除細胞中的目標基因,並將誘導突變之基因成功地傳遞給下一代子細胞。


Higashiyama說明,過去的研究方法比較耗時,需要透過交叉比對現有的突變體,才能檢測重疊基因的功能,透過我們的方法應該能更快速地獲取突變體。


研究團隊表示,希望未來可以持續改進此相對低成本的基因工程方法來提高突變的效率,以利未來探索不明基因組之功能,並成為修改各種生物體中目標基因序列的有效基因工程工具,甚至還可應用此方法於甘藍型油菜作物,以加速作物生長與生產優良品系。



資料來源: 每日科學 Dec 5, 2016  Highly efficient genome engineering in flowering plants
Development of a rapid method to knockout genes in Arabidopsis thaliana

留言

這個網誌中的熱門文章

【鈣與作物品質,進階篇】鈣肥怎麼挑?哪時後施?怎麼用?實習の植物醫生筆記

【鈣與作物品質,進階篇】如何選擇鈣肥?哪時候施?怎麼施?
(本文由科技農報(智耕農工作室)大虫農業共同企劃)

作物除了需要氮、磷、與鉀肥等主要元素,次量與微量元素例如:鈣、鎂、錳與鐵也是不可或缺的要素。「次量與微量元素往往是影響口感、風味、與蔬果品質的關鍵」。


這概念對專業農友來說已是老生常談。鈣肥種類怎麼選?施用的時機?以及施用方法?以下整理了中興大學土環系吳正宗教授,以及肥料從業人員的經驗分享,期許農友都能「投資肥料有賺有賠,施用前請詳閱使用說明書」。


鈣肥是一種土壤改良資材,用途大多為中和土壤的酸性。依照鈣肥種類,大致上可分為,石灰類、爐渣類、以及生物性的蚵殼與蟹粉。好鈣肥的標準,取決於改善酸鹼值的效率,即「以最少施用量就能顯著改善土壤酸鹼度」,因此就環境保育的角度與經濟效益而言,氯化鈣與硫酸鈣是相對等級較差的鈣肥。


農民之聲:有機質複合肥料補助,網頁好讀版!(頁面搜尋關鍵字,即可確認肥料有沒有補助)

農報好康:有機質複合肥料補助網頁好讀版農民朋友注意囉,使用這些肥料可向政府領補助!只要符合申請資格,並使用農委會公告的有機質肥料:「含有機質複合肥料運費補助作業規範」肥料產品彙整表,就能根據 國產有機質肥料補助原則,向當地主管機關申請肥料補助經費。(表格更新日期:106.05.15)

有機質肥料與化學合成肥料不同,肥料來源為動物、植物、微生物殘體或代謝物,不但能增加土壤肥力,還能改善土壤結構增加保水力。雖然肥效比化學合成肥料緩慢,但對土壤與環境的衝擊較小。因此從今年起,政府開始鼓勵慣行農民使用這種環境友善的肥料種類,但那些商品有補助呢?農民朋友可用手機瀏覽器右上方功能鍵,「在網頁中尋找」搜尋功能,或是電腦網頁右上方功能鍵的「尋找」,輸入自家使用的肥料登記字號,就能知道能不能領補助了喔! 相關新聞:為減輕農民成本,農委會啟動有機質複合肥料運費補助





手機搜尋方法(如上圖)


一、台灣肥料股份有限公司
編號 廠牌商品名稱 登記證字號 1 農友牌台肥硝磷基黑旺特1號有機質複合肥料 肥製(複)字第0792034號 2 農友牌台肥硝磷基黑旺特4號有機質複合肥料 肥製(複)字第0792035號 3 農友牌台肥硝磷基黑旺特5號有機質複合肥料

基因編輯「脫靶效應」的隱憂,仍待育種家尋求解方

基因編輯「脫靶效應」的隱憂,仍待育種家尋求解方 編譯 張瑞玶/編輯 林韋佑/責任編輯 柴幗馨

全球暖化及各種因氣候變遷引發的植物病蟲害使得世界許多地區的糧食安全受到威脅。而在低度開發國家中,貧窮與作物欠收更可能導致飢荒和營養不良等更嚴重的糧食安全問題。


面臨作物適應的相關挑戰,英國John Innes Centre 研究團隊表示:使用基因編輯技術,針對作物基因序列中的目標基因進行基因編輯,作為作物的抗病育種的工具,會是一種非常有用且有效的方法。

目前CRISPR技術應用於作物基因的研究仍不廣泛,而作物經由CRISPR技術編輯之後,是否能夠成功地將編輯後的變異序列,繼續保存於後代的植株,尚需要深入的研究。此外關於CRISPR技術的脫靶效應(off-target effect)也是科學家無法百分之百確認的問題。

「脫靶」指的是:基因編輯的時候,CRISPR-Cas9系統沒有在正確的目標基因上,進行基因編輯,因此在非目標基因序列上,產生無法預期的變異。通常序列相似的同源基因,最有可能發生脫靶的狀況。




John Innes Centre以及英國The Sainsbury Laboratory 的科學家們,針對大麥與蕓薹屬植物(Brassica,十字花科下的一屬,常見的作物有青花菜、油菜或蕪菁)的特定基因進行編輯,並分析CRISPR基因編輯的成效:包括使用CRISPR技術是否能促使單子葉植物與雙子葉植物的目標基因片段產生變化、後代植物是否能夠遺傳編輯後的基因、以及基因編輯過程中發生脫靶效應的頻率。

研究成果顯示,大麥與蕓薹屬作物的目標基因片段在使用CRISPR技術之後都有產生微小的變化,雖然僅涉及目標基因序列中的1-6個鹼基。然而,這樣的微小變化也足以有效地阻止目標基因的正常運作。

研究近一步針對後代植株進行基因檢測,發現編輯後的基因序列不僅能保存在後代植株之中,而且後代植株的背景基因組,與使用傳統育種方法培育的後代沒有任何顯著差異。



儘管論文中提供了「如何降低脫靶效應」的試驗設計方法,但在研究過程中大麥與芸薹屬這兩種作物還是發生脫靶效應。

這表示未來科學家應該更謹慎的看待「如何確保CRISPR系統僅只編輯目標基因」的議題,而脫靶效應的發生,也就表示一個基因家族之中除了目標基因本身,同時還有許多相關的基因組都發生了變異。換句話說,除了研究者所認定的目標基因之外,可能還需考量更多非預期…