非基改的基因編輯作物,歐盟基改規範面臨前所未有的挑戰

非基改的基因編輯作物,歐盟基改規範面臨前所未有的挑戰

編譯與整理 柴幗馨編輯 林韋佑


歐洲第一學府-蘇黎世理工學院在2016年刊登了一則具指標性的農業評論,強調未來分子科技育種對農業發展的重要性。隨著植物基因體學與生物技術的快速發展,世界上重要的糧食作物,如水稻、小麥、玉米、與大豆,這些作物基因體都已經陸續完成解序,意味者科學家將能更快速地發現每一個基因在作物體內的功能,甚至對特定的目標基因,創造「新的基因變異」:人為改變基因序列,調整作物的性狀,育成新的品種,也就是大眾熟知的「基因改造技術」(GMO)。

不論是在環境生物與食品安全等層面,傳統的基改產物都充滿了各種風險。原因是基改作物的植株內,存在了一段「非作物自己產生的」基因片段,例如人工合成的抗除草劑基因、或是其他作為篩選標誌的「外源基因」。

近十年來各界對這種「非自然」的序列,始終存在環境生態的衝擊與食安疑慮。因此,歐盟對基改作物採取了最嚴格的管制。除了禁止在歐洲境內種植外,進口基改作物食品進入歐盟地區時也需透過層層把關。



然而2013年,農藝學家結合了傳統育種與基改技術,創造出「不帶外源基因」的基改作物:利用「CRISPR-Cas9」一種存在於細菌中,能精準的修改指定基因序列,創造新變異的「基因編輯,gene editing」技術。育種家先將這套來自細菌的蛋白質系統轉殖入植物體,創造出「具有改變自身基因序列特性」的基改作物(第一子世代F1)。


接著在第一世代群體中,挑選目標基因被CRISPR-Cas9系統改變後的異質結合體品系。這種品係有個特色:目標基因已經被CRISPR-Cas9改變,產生新的基因變異,但該作物的雙套基因組中,只有一套帶有CRISPR-Cas9的基因序列。育種家只要將這種品系的植株自交後,就有25%的機會得到「不具CRISPR-Cas9外源基因」的自交分離純系。


換言之,植物透過自身的分子機制,改變了自己的基因序列,但雜交之後則能生產「不帶有任何外源基因的下一代」。而自交後的純系,只要經過簡單的分子試驗,就能確認基因組是否含有任何「人工合成」基因片斷。無論是技術上或是理論上,使CRISPR-Cas9技術育成的自交分離品系,與傳統育種的作物並無任何差異。


除了CRISPR-Cas9基因編輯系統之外,歐洲種子公司也開發許多「標靶基因突變技術」(Targeted genome modifications)。


新型育種科技的共通點都是:確保品系內不具有「人工合成的」基因片段。目前蘇黎世理工學院的Johannes Fütterer博士,正以這項技術進行小麥抗白粉病的育種計畫。2016年瑞士蘇黎世州的小麥產量,因為白粉病肆虐,大幅減產了20-40%左右,新技術或許能突破小麥抗病育種的瓶頸,但Johannes Fütterer也希望制定基改規範的歐盟執委會,能建立以科學基礎的環境安全評估方法,重新檢討現行的基改法規。
位在瑞士的蘇黎世理工學院在學術與產業均有舉足輕重的地位,並且有歐陸第一學府之美名,。



資料來源: ETH Zurich Sep 09. 2016   The Future of Breeding

留言