跳到主要內容

非基改的基因編輯作物,歐盟基改規範面臨前所未有的挑戰

非基改的基因編輯作物,歐盟基改規範面臨前所未有的挑戰

編譯與整理 柴幗馨編輯 林韋佑


歐洲第一學府-蘇黎世理工學院在2016年刊登了一則具指標性的農業評論,強調未來分子科技育種對農業發展的重要性。隨著植物基因體學與生物技術的快速發展,世界上重要的糧食作物,如水稻、小麥、玉米、與大豆,這些作物基因體都已經陸續完成解序,意味者科學家將能更快速地發現每一個基因在作物體內的功能,甚至對特定的目標基因,創造「新的基因變異」:人為改變基因序列,調整作物的性狀,育成新的品種,也就是大眾熟知的「基因改造技術」(GMO)。

不論是在環境生物與食品安全等層面,傳統的基改產物都充滿了各種風險。原因是基改作物的植株內,存在了一段「非作物自己產生的」基因片段,例如人工合成的抗除草劑基因、或是其他作為篩選標誌的「外源基因」。

近十年來各界對這種「非自然」的序列,始終存在環境生態的衝擊與食安疑慮。因此,歐盟對基改作物採取了最嚴格的管制。除了禁止在歐洲境內種植外,進口基改作物食品進入歐盟地區時也需透過層層把關。



然而2013年,農藝學家結合了傳統育種與基改技術,創造出「不帶外源基因」的基改作物:利用「CRISPR-Cas9」一種存在於細菌中,能精準的修改指定基因序列,創造新變異的「基因編輯,gene editing」技術。育種家先將這套來自細菌的蛋白質系統轉殖入植物體,創造出「具有改變自身基因序列特性」的基改作物(第一子世代F1)。


接著在第一世代群體中,挑選目標基因被CRISPR-Cas9系統改變後的異質結合體品系。這種品係有個特色:目標基因已經被CRISPR-Cas9改變,產生新的基因變異,但該作物的雙套基因組中,只有一套帶有CRISPR-Cas9的基因序列。育種家只要將這種品系的植株自交後,就有25%的機會得到「不具CRISPR-Cas9外源基因」的自交分離純系。


換言之,植物透過自身的分子機制,改變了自己的基因序列,但雜交之後則能生產「不帶有任何外源基因的下一代」。而自交後的純系,只要經過簡單的分子試驗,就能確認基因組是否含有任何「人工合成」基因片斷。無論是技術上或是理論上,使CRISPR-Cas9技術育成的自交分離品系,與傳統育種的作物並無任何差異。


除了CRISPR-Cas9基因編輯系統之外,歐洲種子公司也開發許多「標靶基因突變技術」(Targeted genome modifications)。


新型育種科技的共通點都是:確保品系內不具有「人工合成的」基因片段。目前蘇黎世理工學院的Johannes Fütterer博士,正以這項技術進行小麥抗白粉病的育種計畫。2016年瑞士蘇黎世州的小麥產量,因為白粉病肆虐,大幅減產了20-40%左右,新技術或許能突破小麥抗病育種的瓶頸,但Johannes Fütterer也希望制定基改規範的歐盟執委會,能建立以科學基礎的環境安全評估方法,重新檢討現行的基改法規。
位在瑞士的蘇黎世理工學院在學術與產業均有舉足輕重的地位,並且有歐陸第一學府之美名,。



資料來源: ETH Zurich Sep 09. 2016   The Future of Breeding

留言

這個網誌中的熱門文章

【鈣與作物品質,進階篇】鈣肥怎麼挑?哪時後施?怎麼用?實習の植物醫生筆記

【鈣與作物品質,進階篇】如何選擇鈣肥?哪時候施?怎麼施?
(本文由科技農報(智耕農工作室)大虫農業共同企劃)

作物除了需要氮、磷、與鉀肥等主要元素,次量與微量元素例如:鈣、鎂、錳與鐵也是不可或缺的要素。「次量與微量元素往往是影響口感、風味、與蔬果品質的關鍵」。


這概念對專業農友來說已是老生常談。鈣肥種類怎麼選?施用的時機?以及施用方法?以下整理了中興大學土環系吳正宗教授,以及肥料從業人員的經驗分享,期許農友都能「投資肥料有賺有賠,施用前請詳閱使用說明書」。


鈣肥是一種土壤改良資材,用途大多為中和土壤的酸性。依照鈣肥種類,大致上可分為,石灰類、爐渣類、以及生物性的蚵殼與蟹粉。好鈣肥的標準,取決於改善酸鹼值的效率,即「以最少施用量就能顯著改善土壤酸鹼度」,因此就環境保育的角度與經濟效益而言,氯化鈣與硫酸鈣是相對等級較差的鈣肥。


農民之聲:有機質複合肥料補助,網頁好讀版!(頁面搜尋關鍵字,即可確認肥料有沒有補助)

農報好康:有機質複合肥料補助網頁好讀版農民朋友注意囉,使用這些肥料可向政府領補助!只要符合申請資格,並使用農委會公告的有機質肥料:「含有機質複合肥料運費補助作業規範」肥料產品彙整表,就能根據 國產有機質肥料補助原則,向當地主管機關申請肥料補助經費。(表格更新日期:106.05.15)

有機質肥料與化學合成肥料不同,肥料來源為動物、植物、微生物殘體或代謝物,不但能增加土壤肥力,還能改善土壤結構增加保水力。雖然肥效比化學合成肥料緩慢,但對土壤與環境的衝擊較小。因此從今年起,政府開始鼓勵慣行農民使用這種環境友善的肥料種類,但那些商品有補助呢?農民朋友可用手機瀏覽器右上方功能鍵,「在網頁中尋找」搜尋功能,或是電腦網頁右上方功能鍵的「尋找」,輸入自家使用的肥料登記字號,就能知道能不能領補助了喔! 相關新聞:為減輕農民成本,農委會啟動有機質複合肥料運費補助





手機搜尋方法(如上圖)


一、台灣肥料股份有限公司
編號 廠牌商品名稱 登記證字號 1 農友牌台肥硝磷基黑旺特1號有機質複合肥料 肥製(複)字第0792034號 2 農友牌台肥硝磷基黑旺特4號有機質複合肥料 肥製(複)字第0792035號 3 農友牌台肥硝磷基黑旺特5號有機質複合肥料

基因編輯「脫靶效應」的隱憂,仍待育種家尋求解方

基因編輯「脫靶效應」的隱憂,仍待育種家尋求解方 編譯 張瑞玶/編輯 林韋佑/責任編輯 柴幗馨

全球暖化及各種因氣候變遷引發的植物病蟲害使得世界許多地區的糧食安全受到威脅。而在低度開發國家中,貧窮與作物欠收更可能導致飢荒和營養不良等更嚴重的糧食安全問題。


面臨作物適應的相關挑戰,英國John Innes Centre 研究團隊表示:使用基因編輯技術,針對作物基因序列中的目標基因進行基因編輯,作為作物的抗病育種的工具,會是一種非常有用且有效的方法。

目前CRISPR技術應用於作物基因的研究仍不廣泛,而作物經由CRISPR技術編輯之後,是否能夠成功地將編輯後的變異序列,繼續保存於後代的植株,尚需要深入的研究。此外關於CRISPR技術的脫靶效應(off-target effect)也是科學家無法百分之百確認的問題。

「脫靶」指的是:基因編輯的時候,CRISPR-Cas9系統沒有在正確的目標基因上,進行基因編輯,因此在非目標基因序列上,產生無法預期的變異。通常序列相似的同源基因,最有可能發生脫靶的狀況。




John Innes Centre以及英國The Sainsbury Laboratory 的科學家們,針對大麥與蕓薹屬植物(Brassica,十字花科下的一屬,常見的作物有青花菜、油菜或蕪菁)的特定基因進行編輯,並分析CRISPR基因編輯的成效:包括使用CRISPR技術是否能促使單子葉植物與雙子葉植物的目標基因片段產生變化、後代植物是否能夠遺傳編輯後的基因、以及基因編輯過程中發生脫靶效應的頻率。

研究成果顯示,大麥與蕓薹屬作物的目標基因片段在使用CRISPR技術之後都有產生微小的變化,雖然僅涉及目標基因序列中的1-6個鹼基。然而,這樣的微小變化也足以有效地阻止目標基因的正常運作。

研究近一步針對後代植株進行基因檢測,發現編輯後的基因序列不僅能保存在後代植株之中,而且後代植株的背景基因組,與使用傳統育種方法培育的後代沒有任何顯著差異。



儘管論文中提供了「如何降低脫靶效應」的試驗設計方法,但在研究過程中大麥與芸薹屬這兩種作物還是發生脫靶效應。

這表示未來科學家應該更謹慎的看待「如何確保CRISPR系統僅只編輯目標基因」的議題,而脫靶效應的發生,也就表示一個基因家族之中除了目標基因本身,同時還有許多相關的基因組都發生了變異。換句話說,除了研究者所認定的目標基因之外,可能還需考量更多非預期…