跳到主要內容

水嫩新發現!科學家找到讓植物保持水潤的神奇分子

水嫩新發現!科學家找到讓植物保持水潤的神奇分子

編譯 柴幗馨

名古屋大學的研究團隊發現一種控制植物葉片氣孔開關的化學分子,只要將這種分子噴灑在玫瑰或是燕麥的葉片上,就能夠防止植物在過度乾旱的逆境下失水過多而產生萎凋的現象。

未來科學家會更深入的分析特殊分子防止萎凋的機制,並將其應用在花卉產業,減少花卉產業中因運送過程中產生的耗損問題。





「氣孔」是植物與環境交換氣體的重要工具,植株進行光合作用時需要打開葉片上的氣孔讓二氧化碳分子進入葉片組織內,經過生化反應將二氧化碳轉換為葡萄糖分子成為細胞生長發育的能量來源。

此外氣孔也有調節水分蒸散的功用,當植物面臨乾旱逆境時,控制器孔開闔的保衛細胞會關閉氣孔以減少水分蒸散。

葉片表皮細胞的有一種照光就會被活化的蛋白質-向光素,而植物就是藉由向光素來傳遞「關閉氣孔」的訊號;一旦向光素接收到藍光照射便會啟動「開啟氣孔」的生理機制,加速蒸散作用消耗植株體內水分。


C:\Users\doser\Desktop\180409103942_1_540x360.jpg


圖說:促進氣孔打開的向光素蛋白(黃色)被藍光活化之後,會促進保衛細胞(綠色橢圓形)上的鉀離子轉運蛋白(橘色)吸收鉀離子,使得保衛細胞鉀離子升高因此發生吸水膨脹的現象,導致氣孔打開。而SCL1與SCL2具有抑制向關素傳遞「打開氣孔訊息」的作用,讓植物氣孔維持關閉的狀態。



日本名古屋大學轉化分子生物研究所的團隊從2萬多個化學分子中找到了11種影響氣孔開闔的神奇分子!

其中被命名為SCL1與SCL2的2種分子具有干擾氣孔打開機制的效果,經過5年的試驗研究,團隊證實將SCL1與SCL2分子噴灑在玫瑰與燕麥的葉片表面,會抑制向光素開啟氣孔的生理機制,使得葉片表面的氣孔保持關閉的狀態。

科學家進一步分析兩種化學分子抑制氣孔打開的原因,化學試驗結果顯示,施用SCL1與SCL2分子在植株葉片後,抑制了保衛細胞吸收鉀離子的效率。

由於氣孔打開之前,必須吸收更多的鉀離子使保衛細胞吸水膨脹,進而導致氣孔張開。SCL1與SCL2抑制了保衛細胞吸收鉀離子的能力,因此氣孔順利無法打開。

在植物在氣孔關閉的狀態下,水分蒸散效率也變低,因此能維持植株體內的水分含量達到「保持水潤」的效果。

團隊也將更進一步的將這兩種分子製作成植物保鮮的噴劑,研究主持人木下博士表示:「這項研究不但能應用在日本傳統花道文化產業,開發出能減緩葉片萎凋的製劑,也有機會運用在花卉保鮮技術,降低花卉在運輸過程中的損耗。」

資料來源: 每日科學 April, 2018 Discovery of compounds that keep plants fresh


留言

這個網誌中的熱門文章

【鈣與作物品質,進階篇】鈣肥怎麼挑?哪時後施?怎麼用?實習の植物醫生筆記

【鈣與作物品質,進階篇】如何選擇鈣肥?哪時候施?怎麼施?
(本文由科技農報(智耕農工作室)大虫農業共同企劃)

作物除了需要氮、磷、與鉀肥等主要元素,次量與微量元素例如:鈣、鎂、錳與鐵也是不可或缺的要素。「次量與微量元素往往是影響口感、風味、與蔬果品質的關鍵」。


這概念對專業農友來說已是老生常談。鈣肥種類怎麼選?施用的時機?以及施用方法?以下整理了中興大學土環系吳正宗教授,以及肥料從業人員的經驗分享,期許農友都能「投資肥料有賺有賠,施用前請詳閱使用說明書」。


鈣肥是一種土壤改良資材,用途大多為中和土壤的酸性。依照鈣肥種類,大致上可分為,石灰類、爐渣類、以及生物性的蚵殼與蟹粉。好鈣肥的標準,取決於改善酸鹼值的效率,即「以最少施用量就能顯著改善土壤酸鹼度」,因此就環境保育的角度與經濟效益而言,氯化鈣與硫酸鈣是相對等級較差的鈣肥。


農民之聲:有機質複合肥料補助,網頁好讀版!(頁面搜尋關鍵字,即可確認肥料有沒有補助)

農報好康:有機質複合肥料補助網頁好讀版農民朋友注意囉,使用這些肥料可向政府領補助!只要符合申請資格,並使用農委會公告的有機質肥料:「含有機質複合肥料運費補助作業規範」肥料產品彙整表,就能根據 國產有機質肥料補助原則,向當地主管機關申請肥料補助經費。(表格更新日期:106.05.15)

有機質肥料與化學合成肥料不同,肥料來源為動物、植物、微生物殘體或代謝物,不但能增加土壤肥力,還能改善土壤結構增加保水力。雖然肥效比化學合成肥料緩慢,但對土壤與環境的衝擊較小。因此從今年起,政府開始鼓勵慣行農民使用這種環境友善的肥料種類,但那些商品有補助呢?農民朋友可用手機瀏覽器右上方功能鍵,「在網頁中尋找」搜尋功能,或是電腦網頁右上方功能鍵的「尋找」,輸入自家使用的肥料登記字號,就能知道能不能領補助了喔! 相關新聞:為減輕農民成本,農委會啟動有機質複合肥料運費補助





手機搜尋方法(如上圖)


一、台灣肥料股份有限公司
編號 廠牌商品名稱 登記證字號 1 農友牌台肥硝磷基黑旺特1號有機質複合肥料 肥製(複)字第0792034號 2 農友牌台肥硝磷基黑旺特4號有機質複合肥料 肥製(複)字第0792035號 3 農友牌台肥硝磷基黑旺特5號有機質複合肥料

基因編輯「脫靶效應」的隱憂,仍待育種家尋求解方

基因編輯「脫靶效應」的隱憂,仍待育種家尋求解方 編譯 張瑞玶/編輯 林韋佑/責任編輯 柴幗馨

全球暖化及各種因氣候變遷引發的植物病蟲害使得世界許多地區的糧食安全受到威脅。而在低度開發國家中,貧窮與作物欠收更可能導致飢荒和營養不良等更嚴重的糧食安全問題。


面臨作物適應的相關挑戰,英國John Innes Centre 研究團隊表示:使用基因編輯技術,針對作物基因序列中的目標基因進行基因編輯,作為作物的抗病育種的工具,會是一種非常有用且有效的方法。

目前CRISPR技術應用於作物基因的研究仍不廣泛,而作物經由CRISPR技術編輯之後,是否能夠成功地將編輯後的變異序列,繼續保存於後代的植株,尚需要深入的研究。此外關於CRISPR技術的脫靶效應(off-target effect)也是科學家無法百分之百確認的問題。

「脫靶」指的是:基因編輯的時候,CRISPR-Cas9系統沒有在正確的目標基因上,進行基因編輯,因此在非目標基因序列上,產生無法預期的變異。通常序列相似的同源基因,最有可能發生脫靶的狀況。




John Innes Centre以及英國The Sainsbury Laboratory 的科學家們,針對大麥與蕓薹屬植物(Brassica,十字花科下的一屬,常見的作物有青花菜、油菜或蕪菁)的特定基因進行編輯,並分析CRISPR基因編輯的成效:包括使用CRISPR技術是否能促使單子葉植物與雙子葉植物的目標基因片段產生變化、後代植物是否能夠遺傳編輯後的基因、以及基因編輯過程中發生脫靶效應的頻率。

研究成果顯示,大麥與蕓薹屬作物的目標基因片段在使用CRISPR技術之後都有產生微小的變化,雖然僅涉及目標基因序列中的1-6個鹼基。然而,這樣的微小變化也足以有效地阻止目標基因的正常運作。

研究近一步針對後代植株進行基因檢測,發現編輯後的基因序列不僅能保存在後代植株之中,而且後代植株的背景基因組,與使用傳統育種方法培育的後代沒有任何顯著差異。



儘管論文中提供了「如何降低脫靶效應」的試驗設計方法,但在研究過程中大麥與芸薹屬這兩種作物還是發生脫靶效應。

這表示未來科學家應該更謹慎的看待「如何確保CRISPR系統僅只編輯目標基因」的議題,而脫靶效應的發生,也就表示一個基因家族之中除了目標基因本身,同時還有許多相關的基因組都發生了變異。換句話說,除了研究者所認定的目標基因之外,可能還需考量更多非預期…